Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations

نویسندگان

  • B. Sanderse
  • Barry Koren
چکیده

This paper investigates the temporal accuracy of the velocity and pressure when explicit Runge–Kutta methods are applied to the incompressible Navier–Stokes equations. It is shown that, at least up to and including fourth order, the velocity attains the classical order of accuracy without further constraints. However, in case of a time-dependent gradient operator, which can appear in case of time-varying meshes, additional order conditions need to be satisfied to ensure the correct order of accuracy. Furthermore, the pressure is only first-order accurate unless additional order conditions are satisfied. Two newmethods that lead to a second-order accurate pressure are proposed, which are applicable to a certain class of threeand four-stage methods. A special case appears when the boundary conditions for the continuity equation are independent of time, since in that case the pressure can be computed to the same accuracy as the velocity field, without additional cost. Relevant computations of decaying vortices and of an actuator disk in a time-dependent inflow support the analysis and the proposed methods. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations

In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both...

متن کامل

High-order Discontinuous Galerkin Methods for Incompressible Flows

Abstract. The spatial discretization of the unsteady incompressible Navier-Stokes equations is stated as a system of Differential Algebraic Equations (DAEs), corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Runge-Kutta methods applied to the solution of the resulting index-2 DAE system are analyzed, allowing a critical comparison...

متن کامل

Development of Openfoam Solvers for Incompressible Navier–stokes Equations Based on High-order Runge–kutta Schemes

Nowadays open-source CFD codes provide suitable environments for implementation and testing low-dissipative algorithms typically used for turbulence simulation. Moreover these codes produce a reliable tool to test high-fidelity numerics on unstructured grids, which are particularly appealing for industrial applications. Therefore in this work we have developed several solvers for incompressible...

متن کامل

New explicit Runge-Kutta methods for the incompressible Navier-Stokes equations

New explicit Runge-Kutta methods are presented for the time integration of the incompressible Navier-Stokes equations. The differential-algebraic nature of these equations requires that additional order conditions are satisfied compared to the classical order conditions for ordinary differential equations. The methods presented in this work are high-order accurate for both velocity and pressure...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012